top of page
roarebtorocas

Adobe Acrobat Pro DC 2017.012.20095 Final Crack - [SH] Serial Key Keygen: Comparison with Other PDF



Hydrocracking process of Nyamplung (Calophyllum inophillum Linn) seed oil to produce biogasoline using H/bentonite and Ni/Al2O3-bentonite that pillared by Al2O3 as catalyst had been conducted. Bentonite was activated by acidification using HF 1% and H2SO4 0.5 M. Ni metal was impregnated into bentonite with two steps reaction; therewas intercalation with Al2O3kegging ion and Ni metal impregnation using NiCl2 metal salt. Catalysts were characterized by infrared spectrophotometer (FTIR), X-ray diffraction (XRD), X-ray fluorescence (XRF), BET, TEM and ammonia adsorption. Hydrocracking reaction was variated by Ni/Al2O3-bentonite and H/bentonite with ratio catalyst/oil 1:100. Biocrude was prepared by extraction by using ethanol 96%. Hydrocracking oil products were further analyzed by GC-MS. The results show that the acidity of bentonite by activation using HF 1% and H2SO4 0.5 M has been increased from 62.58 to 64.62 mmol/g. Impregnation process also increased the acidity of bentonite from 62.58 to 64.89 mmol/g. Activation using HF 1% and H2SO4 0.5 M, intercalation by Al2O3 and impregnation by Ni metal were increasing the crystallinity, surface area, total volume pore and average pore size of bentonite. These techniques were also causeddealumination of bentonite. The hydrocracking process successfully synthesized hydrocarbons with a number of carbon chain between C5-C20 which include bio-gasoline group compounds. Moreover, catalytic processes by H/bentonite and Ni/Al2O3-bentonite also successfully produced 39.83% and 60.37% of biogasoline yields, respectively.


Thirty-two jet fuel samples of varying properties were produced from shale oil and coal syncrudes, and analyzed to assess their suitability for use. TOSCO II shale oil and H-COAL and COED syncrudes were used as starting materials. The processes used were among those commonly in use in petroleum processing-distillation, hydrogenation and catalytic hydrocracking. The processing conditions required to meet two levels of specifications regarding aromatic, hydrogen, sulfur and nitrogen contents at two yield levels were determined and found to be more demanding than normally required in petroleum processing. Analysis of the samples produced indicated that if the more stringent specifications of 13.5% hydrogen (min.) and 0.02% nitrogen (max.) were met, products similar in properties to conventional jet fuels were obtained. In general, shale oil was easier to process (catalyst deactivation was seen when processing coal syncrudes), consumed less hydrogen and yielded superior products. Based on these considerations, shale oil appears to be preferred to coal as a petroleum substitute for jet fuel production.




CRACK Vista activation (disinfected)



The effect of the feedstock composition and the process conditions on the current catalyst activity in catalytic cracking technology using a mathematical model is performed in this research. The mathematical model takes into account the catalyst deactivation by coke for primary and secondary cracking reactions. The investigation results have shown that the feedstock has significant effect on the yield and the content of coke on the catalyst. Thus, the relative catalyst activity is significantly reduced by 7.5-10.7 %. With increasing the catalytic cracking temperature due to the catalyst flow temperature rising, the coke content and the yield per feedstock increase and the catalyst activity decreases by 5.3-7.7%. Rising the process temperature together with the catalyst circulation ratio contributes to increase of the coke yield per feedstock in the catalytic cracking and decrease of the coke content on the catalyst. It is connected with the catalyst flow rising to the riser and the contact time decreasing in the reaction zone. Also, the catalyst activity decreases in the range of 3.8-5.5% relatively to the regenerated catalyst activity (83 %). 2ff7e9595c


0 views0 comments

Recent Posts

See All

Comments


bottom of page